منابع مشابه
Dynamic Algorithm Portfolios
Traditional Meta-Learning requires long training times, and is often focused on optimizing performance quality, neglecting computational complexity. Algorithm Portfolios are more robust, but present similar limitations. We reformulate algorithm selection as a time allocation problem: all candidate algorithms are run in parallel, and their relative priorities are continually updated based on run...
متن کاملOnline Dynamic Algorithm Portfolios
This thesis presents methods for minimizing the computational effort of problem solving. Rather than looking at a particular algorithm, we consider the issue of computational complexity at a higher level, and propose techniques that, given a set of candidate algorithms, of unknown performance, learn to use these algorithms while solving a sequence of problem instances, with the aim of solving a...
متن کاملDeep Learning for Algorithm Portfolios
It is well established that in many scenarios there is no single solver that will provide optimal performance across a wide range of problem instances. Taking advantage of this observation, research into algorithm selection is designed to help identify the best approach for each problem at hand. This segregation is usually based on carefully constructed features, designed to quickly present the...
متن کاملLearning Algorithm Portfolios for Parallel Execution
Portfolio-based solvers are both effective and robust, but their promise for parallel execution with constraint satisfaction solvers has received relatively little attention. This paper proposes an approach that constructs algorithm portfolios intended for parallel execution based on a combination of case-based reasoning, a greedy algorithm, and three heuristics. Empirical results show that thi...
متن کاملAlgorithm portfolios Carla
Stochastic algorithms are among the best methods for solving computationally hard search and reasoning problems. The run time of such procedures can vary significantly from instance to instance and, when using different random seeds, on the same instance. One can take advantage of such differences by combining several algorithms into a portfolio, and running them in parallel or interleaving the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annals of Mathematics and Artificial Intelligence
سال: 2007
ISSN: 1012-2443,1573-7470
DOI: 10.1007/s10472-006-9036-z